
-. . . . . . . W.

"-1a AFRPL TR-45-030 AD:

AD-A 157 959 p

FinaReport Modeling and Control offor the period
31 August 1984 to Flexible Structures
4 March 1985

May 1985 Authors: Optimization Incorporated
J. A. Burns 29 High Meadow Drive
E. M. Cliff Biacksburg, VA 24060
R. M. Goff
H. J. Kelley
F. H. Lutze K506-1

F04611-84-C-0032

Approved for Public Release

Dietribution unlimited. The AFRPL Technical Servioee Office has reviewed this report, and It Is .7 -
releasable to the National Teohnloal Information Service, where It will be available to the general
public, including foreign nationals.

,,. • ° .

prepared for the: Air Force 4 0-
Rocket Propulsion K-
Laboratory
Air Force Space Technology Center
Space Division, Air Force Systems Command
Edwards Air Force Base,
Ca!lifornla 93523-5000

•3 o--37



NOTICE

When U.S. Government drawings, specifications, or other data are used for

any purpose other than a definitely related government procurement operation,

the government thereby incurs no resp)nsibility nor any obligation whatsoever,

and the fact that the government may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other data, is not to be

regarded by implication or otherwise, or conveying any rights or permission to

manufacture, use, or sell any patented invention that may in any way be

related thereto.

FOREWORD

This report was prepared by Optimization, Incorporated, in fulfillment of

contract number F04611-84-C-0032 with the Air Force Rocket Propulsion

Laboratory (AFRPL), Edwards Air Force Base, Calif. Project manager for the

AFRPL was Lt Eric Dale.

This technical report has been reviewed and is approved for publication

and distribution in accordance with the distribut'.on statement on the cover

and on the DD Form 1473.

ERIC H. DALE, 2Lt, USAF L. KEVIrN SLIMAK
Project Manager Chief, Interdisciplinary Space

Technology Branch

FOR THE DIRECTOR . .. .

A T, ~',T *• [ -

HOMER M. PRESSLEY, Lt Col/U91F
Chief, Propulsion Analysis Division



SECURITY CLASSI" ICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

J. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLAS SIFI ED
2. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

PUBLIC RELEASE. DISTRIBUTION IS UNLIMITED.
2b DECLASSIFICATION/DOV'NGRAOING SCHEDOULE

a PE RFCRMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBERIS)

r.

K506-1 AFRPL-TR-85-030

6a NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

(li applicable)

Optinazation Incorporated Air Force Rocket Propulsion Laboratory

6, ADDRESS ICIly. State and ZIP Code) 7b. ADORESS (City. State and ZIP CodCI
29 High Meadow Drive AFRPL/DYSS, Stop 24

22ac-'c'zurg, VA 240G0 Edwards Air Force Base, CA 93523-5000

go NAME OF FLINDING/SPONSOR;NG 13b. OFF ICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER
ORGANIZAT IONII) ,IpIhCabfrI iI

F04611-84-C-0032

& ADDRESS ,C;!y. State a•nd ZIP Co&-,. 10 SOURCE OF FUNOING NOS

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. NO 0

i1 TITLE 'Incfua•e 3Cu,8ty ('hucuclaI,,i i c(or

fI)DDELING AND CONTROL OF FLEXIBLE STRUCTURES (U 62302F 2864 00 FY

12. PERSONAL AUTHORISI F

"'Urn- , j. :., C li ff, E. M., Goff, R. M., Kelley, H. J., and Llatze. F. TH.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 16. PAGE COUNT

'inal FROM 84/8/31 TO 85/3/4
16. SUPPLEMENTARY NOTATION

II

17 COSATI CODES IS SUBJECT TERMS ICntlinue an reuerre If neCe#Uay and Idfntlt. by block number)

I,
12 1 0

19 A13STRACT (Ulotfiue un reverie I( flIceesO'y and Idenit*y by black nubr

'The principal goals of this program were a demonstration of state-space procedure for
mn~eling and control of a flexible structure, and, more generally, increased understanding
of control problems for such systems. The state-space approach is based on a model of the -.

disttibuted system. That is, the model includes the necessary partial differential i
equations without modal truncation. The basic view is that it is preferable to avoid in-
troducing approximations until they are required (e.g., tor numerical calculations). The
progrw.l ([orial modal, state-space model, optimal-control formulation, approaximation pro
cedure and numerical calculation) is carried out, in detail, for a simple structural systemi
including a rotating hub, a flexible beam and a tip mass. The workis described in Part I of I.
this report. A final section in this part provides some parallel results for a more ccmplexý
structure compri -ed of a hub, two flexible support beams and a tip-body.

The second part of the report is concerned with some parasitic effects on the stabilityj
of a distzibuted system with feedback. The a proach is based on an input-output dencrip-

20 DISTRIBUTION,',VAILABILITY OF ABSTRACT 2.. ASSTIAC ýiECURITY CLASSIFICATION

UNCLASSIFIEDIUNLIMITED 2 SAIME AS RPT. W OTIC USERS UNCLASSIFIED

22& NAME OF RE5PONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER C2c OFFICE SYMBOLi ~ ~iinclude .4m'a Code) !

Eric M. Dale, 2Lt, USAIw (805) 277-5483 DYSSI- Ill I II IIDD FORM 1473, 83 APR EDirION OF 1 JAN 73 IS OBSOLETE

SECURITY- CLASSIFICATION OF THIS PAGL



SECURITY CLASSIFICATION Or THIlS PAGE

BlOc.k 19 (Continued):

7 tion (f the system; specifically, a transfer-function approach is used. In order to keep
the calculation burden reasonably small the structural model studied is a simple cable
which requires only second-order spatial derivatives. The baseline system employs feed-
back of a force to the-'free end' of the cable at a magnitude proportional to the
Velocity at the 'free end". The gain parameter can be varied to produce a locus of roots;
albeit one with a countably infinite number of branches.

The basic system is examined and then the effects of tfree inodifications are studied.
These are: time-delay in the feed-back loop; time-lag in the feed-back loop; and,
viscous damping in the system forward-loop. The most startling result is that with
time-delay the undamped system will be unst ble for any non-zero gain. Viscous damping
apparently provides some help here; with such damping the system will be stable at least
for "small" gain values.

C

p.-.,

i... SECURiTY CLASSIFICATION OF THIS PAGE:



TABLE OF CONTENTS

Section Page

Overview ..................................................... iv

PART I: STATE SPACE CONTROL OF A FLEXIBLE STRUCTURE ......... 1

Introduction. ............................. I

Section i. Equations of Motion ...................... 3

Section II. State Space Formulation .................. 12

Section I1l. The Control Problem ...................... 27

Section IV. Numerical Procedures ..................... 38

Section V. The Two-Beam Structure ................... 48

REFERENCES FOR PART I ........................................ 56

FIGURES FOR PART I ...................... .................... 57

PART II: EFFECTS OF TIME DELAY, ACTUATOR DYNAMICS AND SYSTEM

DAMPING ON THE FEEDBACK CONTROL OF A FLEXIBLE CABLE. 62

Section I. Introduction ............................. 63

Section II. Flexible Cable Analysis .................. 64

Section III. Flexible Cable-Stability and Control ..... 67

Section IV. Feedback Control with First Order
Actuator ................................. 74

Section V. Feedback Control with System Damping 76

Section VI. Closure .................................. 79

REFERENCES FOR PART II ....................................... 81

FIGURES ýGR PART II .......................................... 82

PROG(RAM LISTiNG .............................................. 92

~ilii



OVERVIEW

This report summarizes work done under Contract F04611-84-C-0032

during the period 31 August 1984 through I March 1985. The principal

goals were a demonstration of state-space procedure for modelling and

control of a flexible structure, and, more generally, increased

understanding of control problems for such systems. The state-space

approach is based on a model of the distributed system. That is, the

model includes the necessary partial differential equations without

modal truncation. The basic view is that it is preferable to avoid

introducing approximations until they are required (e.g., for numerical

calculations). The program (formal model, state-space model, optimal-

control formulation, approximation procedure and numerical calculation)

is carried out, in detail, for a simple structural system including a

"rotating hub, a flexible beam and a tip mass. The work is described in

"Part I of this report. A final section in this Part provides some

parallel results for a more complex structure comprised of a hub, two

flexible support beams and a tip-body.

The second part uf the report is concerned with some parasitic

effects on the stability of a distributed system with feedback. The

approach is based on an input-output description of the system;

specifically, a transfer-function approach is used. In order to keep

the calculation burden reasonably small the structural model studied is

a simple cable which requires only second-order spatial aerivatives.

The baseline system employs feedback of a force to the "free end" of the

iv

. .. .. . . . . .. . . . ..... .. . , - .,... . . . - ,. . ...- - . ,, . . .. . , . - • ... .' •



cable at a magnitude proportional to the velocity at the "free end".

The gain parameter can be varied to produce a locus of roots; albeit one

with a countably infinite number of branches.

The basic system is examined and then the effects of three

modifications are studied. These are: time-delay in the feed-back

loop; time-lag in the feed-back loop; and, viscous damping in the system

forward-loop. The most startling result is that with time-delay the

undamped system will be unstable for any non-zero gain. Viscous damping

apparently provides some help here; with such damping the system will be

stable at least for "small" gain values.

........................................ . . . . .
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INTRODUCTION

This report deals with modelling and control of the structure shown

in Figure 1. It is assumed that the structure is pivoting about a fixed

pivot at point 0, and that the motion is in a plane. The structure

consists of three parts, the main frame (body A), the beam (body 8), and

the end mass (body C). The main frame is assumed to be a rigid body

pivoting about point 0. The beam is assumed to be flexible and rigidly

attached to the main frame as a cantilevered beam. Finally, the end

mass is rigidly attached to the end of the beam so that it moves and

rotates witri the end of the beam and its attachment point is assumed to

be at the center of mass of the end mass. A tree body diagram of each

mass is shown in Figure 2.

This report may be logically divided into five parts. In the next

section a 'formal' model for the system is developed. This is done by a

direct application of Newtonian mechanics to each of the structural

components. The model is 'formal' in the sense that no attempt is made

to show that the resulting system of (coupled partial and ordinar'

differential equations is well-posed. That is, we do not prove that the

system has a unique solution for a certain class of initial data, nor do

we prove that the solution depends continuously on the initial daca.

A second section is concerned with development of an abstract

state-space model. Since the differential equations are linear (more

appropriately linearized), the abstract model is in the form

S. . - . .



y(t)= Ay(t) + Bu(t)

where y(t) is the state at time t, u(t) is the control and A and B are

linear operators. The point of this formulation is tnat one has a

theory that guarantees well-posedness under concrete and verifiable

conditions on the operators. We construct our model so that the system

has these properties and hence we have a guarantee that the differential

system makes sense.

A third section is devoted to linear-quadratic regulator theory

for the abstract system. The feedback structure of the optimal control

is discussed along with a factorization procedure that can significantly

reduce the computational problem. A general theory of numerical

approximation is also included in this section. A fourth section

presents details for developing a class of numerical approximations.

Some numerical results are included.

Tne final section describes an analysis of a more complex structure

including a rigid hub, two flexible side beams and a tip-body. This

analysis parallels that of the simpler case but provides fewer details

and no numerical results.

2



I. EOUATIONS OF MOTION

The mathematical model of the structure shown in Figure I is

developed in this section. It is assumed that the structure is pivoting

dbout a fixed pivot at point 0, and that the motion is in a plane. The

development is achieved by direct application of Newton's Laws to

individual members of the structure with the resulting equations summed

to determine the overall motion. The development is rigorous with

assumptions stated as needed or desired.

The structure consists of three parts, the main frame, or mass A,

the beam, or mass B, and the end mass, or mass C. The main frame is

assumed to be a rigid body pivoting about point 0. The beam is assumed

to be flexible and rigidly attached to the main frame as a cantilevered

beam. The end mass is rigidly attached to the end of the beam so that

it moves and rotates with the end of the beam. Finally, the attached

point is assumed to be at the center of mass of the end mass. A free

body diagram of eaci mass is shown in Figure 2.

Beam Equations

The coordinate system to be used is fixed in the main frame and

rotates with it. The urigin is at point 0 with the x axis pointing

along tne undeflected beam, the z axis, the axis of rotation, and the y

oxis completing the right hand set. The position vector to somE point

on the beam is given by

3
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r(t,x) = r(x) + ;(t,x) (,..,

where

r(x) = position to undeflected location of mass element dm

"u(t,x) z position of mass element dm with respect to its
undeflected position.

It is assumed here that the deflections - are small. The governing

equations are given by

r(t,x) •r(x) +;(t,x)

rF.e(t,x ____e = '-5Yt,x) =t(t,x) '2'

Zt x

•rel(t'x" = .:•(ttxl -ttx
50t"

"where

rrel .. x velocity relative to the rotatinc coordinate
,. system

'r, (x acceleration relative to the rotating coordmnate
re-• system

and by Newton's Laws which are r65:

-a dm

0 M- r d M

4
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where

Stotal external force

M =total external moment acting about po*int 0.

The general expression for the acceleration at an... pint s gve9. ' ,K

a0 +- X r 7x7+CATrel r el

6e can note that for the conditions of this problem a = 0 since it 4s a

fixed pivot.

We can apply the moment equation (1.3) to the beam. Substituting

the expressions forr and its derivatives (eq. 1.21' along with the

expression for the acceleration (eq. 1.4) into teq. 1.3) yields the

general result:

-'r :r x E x ( t K' + x [7 x (- x r)]+ r x

[x (x� ~+j ) [ x (. x r + u x

x r) + U x (x ; + x 7( x u; ?r x x
~.2Jx <]x ut) *i rx.... dm

2Ux XUt +r x u tt , u x u tt •dm"-•

where M,0 'Li is the total applied moment on the beam about pcint 0.

Equation 11.5) reduces considerably if we take advantage of sc.re

.dditional assumptiors. If is assumed small so that products such as

L, .-u anr of course uj are neg:gib~e, all but two terms are drrced

S



from eq. (1.5). If we further assume the deflections occur only

perpendicular to the beam (no stretching of the beam, consistent with

small angular rates and deflections), then u = uj, and eq. (1.5) becomes

-- 8 ) " 0  x u (t,x) dm) k (1.6)

where

IO Wm x Jx ,)dm

IOB moment of inertia cf the undeflected beam about pcint 0.

Equation (1.6) is the beam moment equation.

The elastic equation for the beam is obtained from basic prin-

ciples. If the beam is assumed to have uniform properties alon9 its

length, and that no external forces act on the beam except those at the

boundaries, then the equation of motion of an element of the beam is

given by [5-

S"E ' u t't x ) -7:, T

al t,x) - EL_ u(t,x;) = . E xxxx ) .

where

El = the stiffness properties of the beam (constant)

.= density per unit length of the beam (constant)

a(t,x) - the acceleration of the beam element.

The acceleration is given by eq. (1.4) which can be substituted intc eq.

(1.7). Under the previous assumptions, eq. (1.7) reduces to

ut(t,x) -El u x xx~~ j ,-kt

. . .. ..................... ......... ......
• - . . '. .- i " ( -. (.. -- " .-... i-'.. .. .. - '. ." . ".", -'. . -- ; -. " .••' 9 -"."



Main Frame

The equations for the main frame are sin..'' the rigid body

equations of motion. The moment equation is

S I(A) W I w(t) k (1.9'
0 'A 'A t

where

1A moment of inertia of main frame about point 0.

"j End Mass

Both the force and moment et4,2tions are needed for the end mass

since it is translating as well as rotating. The force equation is

given by

'Fc 7 L m c-7(t,L)

where

force on mass due to beam.

Under the previous assumptions, eq. (1.10) becomes

L Ly
i- fLy (ICI

I-•.•" f~Ly -- nc [L.~t) + t)

where -,(t, ut(tL), the relative velocity of the end of the bea;r,

(see eq. 1.2).

7
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For planar motion, only the z component of the moment is of

interest and leads to

Mc l c t) (W.12)

where

Ic =moment of inertia of the end mass about its center of
mass

P(t) * the angular position of the end mass with respect to an
inertial reference.

The angular position of the end mass is that due to the rigid body

motion of the beam, (e), plus the angular motion due to the deflection

of the beam which is equal to the slope of the beam,

(t) = e(t) + ux (t,L)

(t) (t) +-(t) (1.13)

:'t) - (t) + i t)

where

' tt,L) the angular rate of the beam end due to

deflection.

Consequently the moment equation can be written as

Mc z jc (•'t: +A(t'' (2.24:

• ~~........... . .-. .. .......-. •-. -- •.. ---- •



S§ystem Moment Equation

The moment equation for the complete system can be obtained by

combining the moment equations for each individual mass. In order to

carry out this step it is necessary to write the expressions for the

applied moments on the main frame and on the beam. These are

respectively (see Figure 2)

Mo(A% - M (i.;
M0 * A 05O

and

M M0B) MO 8  M c LfL (1.16)y

By adding all the moment equations (1.6, 1.9 and 1.14) together and

"utilizing eqs. (1.11, 1.15 and 1.16) the system moment equation can be

obtained. The result is

LA

L°L

MA = (A + 108 + Ic + m 13) *•(t) ÷ Ic(t) ÷ inLA(t)

+ xutt(t,x)zdx 1.17)
0

where the relation dm=•dx has been used.

Boundary Conditions

Associated with the structural equation (1.8) are the following

boundary conditions; (see Figure 2)

p.
,o'



-At x 0

u(t,o) 0

"cantilever moment to mainframe (1.18)

u (t,o) - 0 (1.19)

MOB -El uxx(tO) (1.20)

At x =L

ut(t,L) = n~t) (1.21)

Utx(t,L) - ( )(1.221

El ux (t,L) = -Mc (1.23,'

fLy El Uxxx(t,L) (.24)

Final Working Equations

For the analysis which follows in the next section, it is useful to

" Werearrange the equations developed previously into a final working set.

We have the structural equation (14.8)

*i utt(tx) x xl.•t) -EI u (t,x). (1.25)

S-

1.0fl

S
b"-_ . . . .. .



From the main frame moment equation (1.9), eq. (1.15) and the boundary

condition (1.20) ie obtain

IA (t)-EI u( (t,O) + MA(t) . (1.26)

The end mass force and moment equations (1.11 and 1.14 respectively) in

conjunction with the boundary conditions (123) and 1.24) become

I c[(t) +•(t)] El uxx(t,L) (1.27)

and

mc CLt) + ;i(t)J El u * (t,L) (1.28)

Equations (1.25-1.28) plus the remaining boundary conditions, eqs.

(1.18, 1.19, 1.21 and 1.22) are the starting point for the analysis in

the next sections.

I

. 11.
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II. STATE-SPACE FORMULATION

The purpose of this section is to construct a state-space model for

the system dynamics. That is, we are seeking an appropriate state-space

Y so that the (linearized) equations can be written as

y(t) Ay(t) + Bf(t) (2.1,'

where f is the control and A and a are appropriate operators. In

addition we shall show that the operators A and a are sufficiently

"nice" that the system (2.1) is well-posed. This means that for

appropriate initial data [y(O)' and control input f, the system (2.11)

has a unique solution and that solution depends continuously on the

initial data.

The formal modelling procedure of the previous section resulted in

the following description:

u tt (tx) +4 x.4t) -El u ... (t,x) (2.2)

iAW(t) El uxx (t,O) + MA(t) (2.3)

I n Jw(t) + 4(t)] -El u xx(t,L) (2.4)

m c[Lý(t) ÷ •t)' El ux (t,Ll 12.5ý

12



In addition to these differential equations there are important

boundary conditions. Since the beam remains joined to the hub one has

u(tO) = ut(t,O) - 0

The cantilever nature of the connection also requires that

ux (t,O) Uxt(t,O) 0

while integrity of the upper joint requires

ut(t,L) t

and

U t(t,L) .t •

As a first step in the state-space formulation observe that the

partial differential equation (2.2) can be re-cast as a first-order

system.

[Uxx t,x) = [U Ju (t,x) + A.,,t",,

ot _7

(2.6)
i )•_~~[u t'tx) 4- X.ý(t).2 D-E 2 ru (~)

• t x L xx

13
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This suggests that the functions (of xý Cuxx(t,x, and [ut(t,x) +

xwp(t)] are worthy of consideration as state components. With this

insight define a "state" z~t) by

w(t)

z(t) - •,(t)

Uxx (t,x)

ut(t,x) + xW(t)

St

Note that z(t) has five coordinates:

angular velocity of the hub

n relative lineal velocity of the tip

relative angular velocity of the tip

u curvature of the beam_•. xx

U t + x W velocity of the beam

. The quantities 9, ' and • are each scalar while [ux and ru + x_

are functions of the spatial variable x. Thus, the state-space can be

* at least formally identified as

" Z = R x R x R x x

2

where R denotes the real line and z is the usual Lebesque space of

real-valued, square-integrable functions defined c' the 'nterval LO,'

~see ~)

14



' --r-. .• • 7 7"7

It is possible to re-write the equations (2.2) (2.5) in terms of

the five components of Z and the control MA'

IA Z;(t) - El Eo z4 (t) + MA(t)

mc [L z1(t) + z2 (t)] = El E DZ 4(t)
(2.7)

I~ Cz 1(t) + z3 (t)' = El EL z4 (t)

z4 (t) C o2 z (t)

Zs(t) .- -I DZ4 (t)

In these equations D denotes differentiation with respect to the spatial

variable x and E b denotes evaluation at x - b. Boundary conditions

require that

E 0 Z5 (t) ut(tO) 0

EL zs(t) a u (tL) * L..(t)L 5 t

Sz2r(t) + L zj(t)

S0•Dz 5 (t) Utx(t,O) = 0

p-.



and

EL oDZ5 (t) a utx (t,L) + ,(t) • L

= z3 (t) + zi(t) L.

The system (2.7) is in the form

Fi(t) = -Z(t) + Hf(t)

:n principle, this can be brought into the normal form (2.1) by

'inverting' F. It is, perhaps, somewhat easier to introduce a

coordinate transformation that 'uncouples' tne left hand side.

Let y. = z. (i - , 4 and 6) while y2 = Lzl + z?, and
1 1Y

zI + z 3 . It may be verified that the system (2.7) car be written in the

form (2.1) with

o 0 0 El 0

IA 0

o o 0 El 0

Ic L

C 0 0 0

o 0 0 EI .3

and

16



1

TA

0
0 (2.9)

B =o

0

0

The boundary conditions are realily translated to

E0 Ys (t) 0

(LY5t) : y2(t)

EO 0oy 5 (t) 0

L oDY 5 (t) Y3 (t)

These conditions are incorporated by restricting the domain of the

operator A to

3((Yl, Y2 ' Y3, Y4 % Y5 ) R x2 x 2

Y4 ' Y5 E W2 ' 2, y5 (0) 0, y5 (L) Y2

y (O) 0, yý(L) : Y3'"

W2,2 is the u-_ual space of real-valued functions with the function dr.#

its derivative in L[i ].As a distance measure on the space Y we

introauce the inner-product

17



II

-7A -Y'i¶ + 7 rny 2w2 + c I 3 y't 3

+ El y4 (x) w4 (x) dx + - yS(x) wS(x) dx
0 0

It can be verified that 'ly 'VPy> is a norm and that Y is 2•Hilbert

space. The inner-product -y,y> is the mechanical energy in the physical

system at state y.

At this point we have constructed a system

y(t) Ay(t) + Ef(t) (L.1N

with state-space Y = R3 x r x L• inner product <, [given by (2.11)

and operators A and B [given by (2.8), (2.9) and ( . The final

part of this section is concerned with establishing that this system

makes sense. Formally one can write down the solution to (2.1) in terms

of the variation of constants formula

y(.) = eA(t-s) f(S)ds
0

Since 3 is bounded, the solution y will have the desired orooerties

(existence, uniqueness and continuous dependence on initial data; if,

and only if, eAt is a Co-semigroup. Hence, we rust show that an A

operator "generates" such a semigroup. This is the (.entral matter in

abstract furm,'latior, such as (2.1).

Over I-" 1.cr -'irty-five sears there has been s.gnificant prcgress

H- in charact •i Q9 'hose operators that are generators of semigroups

I
V -... . .-. v--.-. . - . . .-•.



[4,7,121. We shail make use of a special form of the Lumer-Phillips

Theorem L7].

Theorem (Lun.:r-Phiflips): Let A be a densely defined,
*

closed linear operato-. If both A and A are dissipative,

then A is the generator of a Co semigroup of contractions

on Y.

To employ this theorem we must demonstrate that the A defined by

(2.8, 2.10) satisfies the hypothesis. The fact that A is closed and

densely defined follows from standard results in . theory 9.

Lernma 2.1: The operator A constructed above is dissipative.

Proof: We must show tha. ,.y,AW- 0 for al' y )

Direct calculation reveals that

Y*' Y> 2 1 A Y'~l iT Y4 (0)

El
Sc Y2 -cc Y4

ic '~ , (L)

2 c

I . -

0 0

A.L , .x

I '
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After elementary calculations it is seen that each term has a common

factor (I EI). The last two terms are each integrated by parts to

produce

2<y, AY> - + (
El yIY 4(3) +YyY(L) y3Y4(L)

+ {Y4 (L)yý(L) - Y4 (O)yN(O) - y y(x) dx
Syý(x) y4(x) dx,'

- (Ys(L) y4(L) - Y5(O) y•j(O) - L y()y~)d

The integral terms cancel and the remaining terms can be gathered to

yield

Ei = y4 (O)[yl - yý(O)] + y4(L) [Y2 " Y5(L)]

i
+ Y4 (L) [yý(L) - y 3] + Y4,() [Y5 (0)]

It is now easily verified that for y in the domain of [see (2.11)] each

of the bracketed te-ms is zero so that

< y, Ay 0

"Note that we have, in fact, shown that the operator is conser-

"vative. Since our norm is related to the energy we have simply verified

* that the energy is constant (for the uncontro!!ea system>. Tc complete

the hypothesis of the theorem we must verify that the adjcint operator,-."

is also dissipative. In fact we shall show more.

20
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Lemma 2.2. The operator A is skew-adjoint.

Proof: Recall that the operatorA is defined on its domain

S(A) * (w/ there exists w e Z sucl' that <Ayw', -

for all y C D(A)!

by
if *

A W = W

We use this characterization to compute A

Let y col (y 1 ,y 2,y 3 ,y 4 (.),y 5 (.))E• (A) and assume w

col(w 1 ,w2 ,w3 ,w4 (.),ws(.))and w - col (w1 , w2, ww 4 (.), w*(.)' satisfy

0 = <Ay,W; - ey,w >

Using the definition Of A and the inner product <, we obtain the

identity

0 y4 (0)(Elw,) + Y4 (L) (EIw2 ) - Y4 (L) (EIw 3 )

+El .L }.(x)w4)dv - EW>Ly''(x w5(x)dx ]

0 0

.- £y(lA ÷ y2(rncI.2* + y3(Icw3)WLL

+ El I 4 (x)w•(;)dv E,. yL(x)w kx)dv

: +Ei•Y4 4

21
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Collecting terms and applying the conditions that , y"(OY5 , yO yS :Y 5 (L),

Y3 Y5 (L) and ys(O) - 0, this equation becomes

Sy 4 (0) (ElwI) N y4 (L) (EIw 2 ) Y4 (L) (-EIw3)

" yý(O) (-!o wI) + y5LL) (-mcW2, + y 5 (L)(-I w)

"+ -, [ ys(x) (EIw4 (x) + ys(x) (-ow*(x)), dx0 lw ('ý

.L +~ y"(x" dx,~

,~ [ y'(x) (-E~w4 (x)) + y4 (x) (-EIwx)" dx,0 4

which must hold for all functions y4 !x), y,(x) in the Sobolev space

(see [I,). In particular, this equation hclds for yi"x) 0 and

y,(x) satisfying yj(O) - y'(.,) = y.(L) = yj(L) = 0, i,j =4,5 which

implies that

,L "(x) (EIw4(x)' +Y(X) (-.(xx) dx = 0

0 5 (X 4'

and

o y4(x) (-Etw5 (x)) + y4 (x) (-EIw*(x),' dx - 0.

The fundamental Lemma of the Calculus of "arii-tiois irvalies that

w and w5 (.) belong to ,L) and

42 5



and

El w4(x) Ws*(X).

Substituting for w*(Y) and w*(x) in the integrals and integrating by5
parts, the equation

0 z <y,w> <yw>

"becomes

0 y 4 (0) [EIw1 I EiwN(O)] + Y5 (O)[EI•(wO2)

+ yý(O) [EIw 5(0)j + Yg(o) [-Elw4(o) - I

+ 3'4 (L) [-Elw3 + EIwý(L)j + y5 (L) [-EIw4CL)- mC w2'

Y4 (L) [EIw2 - EIw5 (L)] + ys(L) [EIw4 (L' - w*'4 c 3J

which must hold for all values of y4 (L), yY(0),Y 4 (L.,A Yj(L), yO',

y5$L/, ys(L) and for y5(0) - 0. Thus, it fo]lows that

W'(o) w1i w5(L) w2 , ',(L) w3 , wr(O) = 0

23
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and

"'Elw 4(°), w -- E4l w* El w4 (L)_T m C
* - w, ' ) s . is suchTherefore, if w e D(A), then w =co w2, w2 3W 4 .), w4 5 u

that w4 (x), w (X) E H2 (0,L) with w1  w%(0), w2  w(L),L) 0

(0), and

Aw * COl (-EL w4 (0), -EI w4 (L), El w4 (L), -,w(x), E w4 (x> .- Aw.Amc Ic
AC TC

IL Conversely, it is easy to show that if w is as above then w CO(A and

A w - Aw. This completes the proof that D(A ) -D( A) andI€

'AW 2 - AW In particular, Als skew-adJoint.

Combining Lemmas 2.1 and 2.2 we have established the following.

I

I-..

Theorem 2.1: The operator defined by equations (2.8) and

p_, (2.10) generates a Co semigroup of contractions on the state-

3space Ya R x 2  x L

2,-*

, We have verified that the state-space model assembled from the

formal system does indeed make sense. Before closing this section we

"note that the angular coordinate e may be appropriate in the control
L problem. That is, we want to add a "zeroth" state, with equation "!(t';

24



,.(t). To avoid duplicating much of the previous work, we shall do this

wy dugmenting the btate and "perturbing" the A operators.

Let Z - R x Y and consider the dynamical system

1(t) AZ(t) + ýfwt

with Y"1
(2.12)

B B~
and

(,A,y) E R x Y a E_ R and y E r(A)

The inner-product is extended in an obvious way

b(-,y), (3,w) 7Z + <y,W>

It is clear that one can write A as a sum

A z A. A

3- "

where
p.

;- '•oA (-:'Y) : 7

"I..

"25
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"It can be easily seen that A0 generates a contraction semigroup on Z.

"The proof is exactly the same as that used to demonstrate that A

generates a contraction semigroup on Y. Also it is clear that A1  is a

bounded linear operator. A standard result [7, p. 76] can be used to

conclude that A generates a Co semigroup on Z. It should be noted that

A is not conservative and hence Ijz(t)j! will not be constant in the

unforced case. 3 is obviously bounded.

r

t.
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III. THL CONTROL PROBLEM

In this section we formulate a general quadratic optimal control

problem for distributed parameter systems and then review those results

that are important for developing approximation and numerical schemes

for computing feedback gains. Let Z, U and A be real Hilbert spaces.

We use the symbol <,> to denote the inner product in each space. The

space Z is the state space, U is the space of control inputs and ', is

the space of outputs (observations). Furthermore, we assume that A with

domain D(A); Z is the generator of a strongly continuous semigroup eAt

on Z and B: U - Z and v: Z - A are continous linear operators. We

assume that R: U - U is continuous, linear, self-adjoint (i.e. R - R*)IIand I.R( > m > 0. Moreover, we define 9 vv

The distributed parameter control system is governed by

z(t) AZ(t) + Bu(t) (3.1)

with output

y(t) - vz(t) (3.2)

Given Z . the (mild) solution to (.)stsyn ( sgvnbi:! G ve z , he (mid>so ut on to (3.1) satisfyingz 'o,' Zo0 is giver by

the variation of parameters formula

zlt)z eAtzo +• eA(t-S) a u(s) ds . (3.3)
0
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I
We consider the problem of finding u(.) e L2 (O,T;U) which minimizes

J (u) ; T (< Q z (s), z(s) ' R u (s), u(s) ,) ds (3.4)
0

where Z(t,' is given by (3.3) for 0O. t_ T. This problem is the most

direct extension of the standard finite-dimensional linear quadratic

control problem.

It can be shown (see Gibson [313) that the optimal control u*(t) is

state feedback. In particular,

u*(t) R S f(t)Z(t), '3.5)

where F(t) Z - Z is the solution to the operator Riccati integral

equation

T A* (n-t) A(nt) (3.6)

71t) *f *e -Q Pt(r,) BR a fl(r)] e - dr (3n
t

It is important to note that in general (3.6) cannot be differentiated

to produce a Riccati differential equation. This lack of "smoothness"

is one reason that numerical methods for computing approximate (sub-

optimal) gains have to be carefully designed.

Another feature that is apparent from (3.6) is that the adjoint

0 operator A plays an important role in determination of -(t). For

infinite-dimensional problems such as structural control, the operator A

is a differential operator. It is not a continuous operator. The same

28
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is true Of A". Any approximation scheme used for computing sub-optimal

gains must be based on a numerical algorithm that produces good

approximations toA andA This turns out to be a crucial point that

is often overlooked in finite element and modal control approaches to

these problems.

As we shall see below, computing numerical solutions to the Riccati

equation (3.6) involves solving non-linear mixed integral and partial

differential equations. This is a highly complex problem. There are

other methods for computing the gain operator

K(t) z R B1 (t)

directly. One such method, the Chandrasekhar algorithm, is ideally

suited for these infinite-dimensional problems. In particular, it can

be shown (see [8]) that the gain operator can be found by solving the

coupled Chandrasekhar integral equations

K. ',t) R B*L*c (i)L,n)d-. (3.711

t

"it) yeA(T-t)_ :T .(•) a .(n) eA(i-t) d., (.8)

t

where K~t): Z - U and :{t): Z- .. are bounded strongly continucus

operators.

In many applications equations p3.7) - (3.8; are less dificult to

solve numerically than equation (3.6). This is particularly true for

29



problems with a fixed finite number of sensors and actuators. Such

problems occur in realistic formulations of structural control problems,

and result in finite dimensional control and observation spaces, i.e.

U -Fm andA PP.

In order to illustrate the potential advantages of the

Chandrasekhar algorithm, consider the control problem for the structure

described in Sections I and 2. The state space is Z zP4 x :2 (0,L)

x c2 (O,L). The Riccati operator 5l(t): Z - Z has the form

,•o(t).)o t

7,1 0 ( t ) .1 1 1 ( t )

where

.ot) is a 4 x 4 matrix and 71, i(t) have the representations

= jL PItT P:2 ] [l-j

"4p2 (t,x) q2 (t,x) r 2(t,x)

L J

R~~~~ ~ ~ ~ ~ (t (X m1tX (~)rI(tX' ik,) .



and

1( .)4L Q 1 1 (t,X ,T ) . 112 (tX,r)

JO .' 2 1 (t,x,T) ri 2 2 (t,x,r) J -2(7)

where pi, qi, ri, si, aij i,j -1,2 are all L.., functions. The Riccati

equation (3.6) becomes a coupled integral-partial differential equation

that must be solved to determine the 16 entries in ;o0 0 (t) and the 12

functions pi, qi, ri, si andoij for i,jal,2, 0< t< T, O< x,< L.

On the other hand since the operator B u col (O,1/IA0,0,0,0)

has rank one the gain operator K(t) R B'a(t) has rank one and K(t, has

the form

4 ^ L
K(t)Z(t) K (t)zi(t) + r K,(

. 1 Ks(t,s)z 5 (t,s)ds + [ K6(t's)z6(t,s)ds_--" i-10 0

or equivalently,

K(t)z(t) = K1 (t)3(t) + K2(t) _(t) + K3 (t) (t) + K4 tt. (t,

" K5' ts)u xx(ts)ds + 0 K6 (ttsL[ut(t ,S'ds k.(3.9)

In order to determine the gain operator it is sufficient :o determine

the 6 functions Ki, i = 1,6. The functions K=kt,s) and K 't,s; are
6'

"called the functional gains. These functions are linear combinations of

"31
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q.(t,s). Note that the functions.: ,i,, pi, r,, si, i-1,2 are not needed

to define the gain operator.

If the observation operator v has finite rank, say"- Z P

then (t) has the form

4L

t+:1 A 6 'ts:z6 (s'ds

where the functions Ai(t) take values in ]Pi 1,2,3,4 and A is\: ,

for i - 5,6. In this case the Chandrasekhar equations involve coupled

integral-partial differential equations to be solved for the 6 functions

Vi(t), K (t,s), 0< t < T, 0 _ s <_ L and the 6"p functions that are the

entries in theRp valued vector functions A (t) A,(t,s) for 0 < t ,

0 < s'_ L. The main point to be made here is that the spatial dimension

of the equations (3.7) - (3.8) is one, compared to equation (,3.6) which

has spatial dimension two. This reduction can be substantial when one

attempts numerical solutions of the equations.

Perhaps the simplest way to see the real advantage of the

Chandrasekhar algorithm is to apply it directly to the fi'.'ite dimen-

sional approximating system. An example cf this type will be given in

Section 4.

In order to obtain approximate solutions to the Riccati equatior

(3.6) or the Chandrasekhar eouations (3.7) - (3.8' it is necessary tc

approximate the operators A A , , and-. The most difficult

aspect of this problem is the development of convergent apprcximat~or

schemes forA and A. We sha',l need the following definitions.
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Definition 1. An approximating sequence for the concrol problem defined

N N . ," ,N
by equations (3.3) - (3.4) is a sequence (A , B R ) such that 4

RN and QN I cvN: v' are continuous linear operators satisfying

' RN "_ m O is non-negative definite, Nu - Bu and R Nu- Ru for

all u U U, z N iz for all z C Z and the operators AN generate strongly

..N

continuous semigroups e "t satisfying

N

eAtz - ez l3.1At

for all z Z, uniformly for t-' [O,T]

An approximating sequence is said to be a strong approximating sequence

11 the semigroup e[' generated by [AN] satisfies

e L[A tw- eA*tw (3.12.

for all w E Z uniformly for t c [O,17

.ne construction cf approximating sequences for the control problem

(3.3,) - (3.4,' is a problem in numerical analysis and approximation

theory. The basic idea is to approximate the (differential' cGperatur

by a finite-dimensional operator AN (i.e. using finite elements, finite
N

differences, modal truncation, etc.) and then showing that A converging

to ; implies (3.11) and (3.12). This is a nontrivial problem in

N
functional analysis. In fact, the basic question (when does Az Az

imply (3.1:) and (3.162)) is not yet full) understood. A partial answer
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to the convergence question is provided by the now famous Trotter-Kato

Theorem [11". Although there are a number of extensions of this theorem

(see Theorem 3.1 in [2]), we state a simple version that is sufficient

for the problems considered here.

Theorem (Trotter-Kato). Let Bbe the generator of a strongly

continuous semigroup eAt satisfying !eAI Assume that A Nis

SN id sequence of operators generating strongly continuous semigrcups e t

satisfying.

i) lijeA 11 < Me'; N=1,2...

ii) ANZ - AZ for z C D, D dense in z

iii) there exists with Re(x 0 ) > 3 such that (A-, I'- is dense
N Ain Z. Then e;' - eA• for all z c Z and the convergence is uniform for

t [0,T].

In terms of numerical analysis, condition i; is the stbiitv require-

ment and condition ii) is the consistency requirement. Thus convergence

of the approximation scheme is dependent upon having a consistent and

stable numerical scheme that also satisfies the technical condition

iii). Any numerical scheme that does not satisfy conditions i) - iii)

will not produce an approximating sequence for the control problem (3.3'

- (3.4). Moreover, even if the approximating sequence is such that i'

34
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iii) are satisfied, there is no assurance that it will be a strong

approximating sequence unless the operators [A and A* also satisfy i,

- iii).

The following convergence results are the basis for numerical

algorithms for computing sub-optimal controls. The fundamental results

are due to Gibson [3]. Powers r8a modified Gibson's results to apply to

Chandrasekhar algorithms.

Theorem 3.1. Let (AN, BN, v , RN) be an approximating

sequence for the control problem (3.3) - (3.41. Let rIN(t)

be the solution to the Riccati equation

rN N* N(t) N 7(t) N _ qN

?~t=E ](t) [A flt- t)A' - O

+ 1NBNERN [BN]* fiN(t), 0 > t > T , (3.13)

with

1N(T) - L N (3.14)

i) If n(t) is the solution to the Riccati integral equation (3.6),

then for each t E [0,T1, T z N(t)z weakly r•(t)z

ii) If the approximating sequence is a strong approximating

seyuence, then F N (t) z t t)z.
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iii) if, in addition, the control space U is finite dimensional

and v Nz - vz for z E Z, then for 0 < t < T

JIKý(t) - (t)II - o0 3.5

where

K(t) is the gain operator defined by (3.7) - (3.8) and KN(t) is the

solution to the Chandrasekhar equations

dK Nit N i-i r ~ N* N31

dK (t) --R [BN]* [LN(t)] L N(t) (3.W

TOtT 0< t< T

SNt) = -_ (t) CAN 87 (t)]

with

LN (t) - vN and KN(T) 0 (3.18)

A proof of this theorem will appear in a forthcoming paper. How-

ever, it is clear that from a practical point of view it is desirable to

have uniform convergence of the gain operator !i.e. (3.15)) rather thin

weak convergence. Therefore, considerable effort should be devoted to

constructing strong approximating sequences that have the additional

property that vN . v Such schemes are needed to ensure uniform con-
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vergence of the approximating gain operators KN(t) (obtained form a

finite dimensional Chandrasekhar algorithm) to the optima) gain operator

K(t).

37
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IV. NUMERICAL PROCEDURES

We have seen that the dynamics of the physical system can be

formulated as an abstract model. A control problem has been stated and

its 'solution' given without introducing any approximations. In

particular, for the linear quadratic problem of Section III one knows

that the optimal control can be given in feedback form as:

MA(t) - KI(t)e(t) + K2 (t)w(t)

+ K3 (t)n(t) + K4 (t)((t)

(4.1)

L
+ f K5(ts) u (t,s) ds

0xx

L
+f K6 (ts) Ut(t,s) ds

0

The time-varying gains Ki, including the 'functional-gains' K5 and K6 ,

&re computed from the 'solutions' of the Chandrasekhar Equations (3.7,'

and (3.8).

Calculation of these gains requires approximation Of A and A* as

discussed in Section Ill. In this section we shall discuss some details

for constructing these approximations. Since for our problem A - A*

one need only consider the task of approximating A. It should be noted

that this simplification is not generally possible.
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Recall that our state-space is Z R 4 x L2 x L.2 and it is clear

that this space is infinite-dimensional because of the L 2 "functions" in

the Z5 and Z6 coordinates. One useful way to think about constructing

the approximates of AN is to imagine finite-dimensional subspaces ZNC Z

in which the 'functional coordinates' are approximated as linear com-

binations of elementary functions. The choice here is to use splines

[10].

Specifically, we take the interval [0,1] and divide it into N equal

subintervals with (N+1) 'knots' at x-O, 1/N, 2/N,...,1. Consider a set
of interpolating splines with the property that O(J/n- The

degree of these splines is not yet specified; in practice one might use

piecewise linear (hat functions) or piecewise cubic elements.

Define eiN E Z, I - 0,1,...,N, by

eN . (0, 0, 0, 0, cN(x/L), 0)

and for J 1,2,... ,N let

eN N 0 , ON() (I)

N NFinally let k 2  (1, 0, 0, 0, 0, 0) and e 1 (0, 1. 0, 0, 0, 0)

The set E N -e_ e Nr... ,& )C Z is linearly independent and

hence its span is a (2N+3) dimensional subspace of Z (say span EN - zN).
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For ease of exposition let Nn denote the set No z (0,1,2,...,N} and N1

denote the set Y (1,2.3....,N).

Note that the basis EN has been arranged so that each ei satisfies

the boundary conditions needed to be in D(A). The ease of this con-

struction is a favorable result of our choice of state-space. That is,

one could have eliminated the coordinates Z3 and Z4 (n and ;I) by

Id ntifying n(t) - Ut (tL) and ý(t) = Utx(t,L). However, it would

then be necessary to incorporate equations (1.27) and (1."28 as boundary

conditions in the domain of A. This greatly complicates the task of

constructing basis elements.

Continuing with the numerical aspects we shall display a matrix

N Nrepresentation of A in terms of the basis E . Let PN-: ZN denote

the orthogonal projection onto ZN and (formally) write AN =p NA PN.

The jth column in the matrix representation of AN will be the image of

th N N
the ,t basis element under A , represented in terms of the basis E

Since A•Ne - PNAe, the representation amounts to solving the usual norna',

equations (see [10]) for the best approximation of Ae in terms of the

basis EN.

Straight forward calculations reveal that

N - A eN col - 1, 0, 0, 0, 0, 01

0

"40
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0

El • i (0)
EI

~N __ q*i' (Z)
A e, -I I

I mcL

Ci c NO0 -El Oi (1)

0

-El 0'
oL2

and

0

N jA% *j 0

jCN 1  0

0 _

Note that we have supressed notation indicating the dependence of

the spline functions on the grid size parameter N. Also observe that

- one could approximate the second derivative operator (e.g. by differ-

encing the first derivative) and hence allow A to operate on functions

not smooth enough to be in W This would be needed, for example, if

Sthethe i were linear splines.
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The normal equations are of the form

GN A N R N (4.2)
N AN N and Ris th

where GN is the gram matrix with (i,j) element < ei

NNmatrix with (ij) element <el , Aej >. From the form of the basis

vectors it is readily seen that:

N Ni) e 2 and e1 are each orthogonal to the remainder of EN

N N 1/* ii) 'ew 2  qe2 > 1/

ii)< N N 'A

2

iv) each eN is orthogonal to each eN ; , c Not j E N
NN+j

Hence GN is block diagonal and, in particular

N N
G 1 1/2 G 1

SG

Direct calculations reveal that

42
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N N
G I(i ,j) - 2 < e.11 e

- EIL fL b1(S) li(s) ds
0

icj E NO,

and that

< e

PL 3  [IA ¢t (0) .' (0)

m+ Mc 0i (i j 1I) (4.3)
+ I

- 0

L+ • ýj(s) .,j(s) dsj
0

l,j cN 1

S1

Note that the choice of B-splines, which are non-zero over only a

N
small' portion of the unit-interval, means that the G matrices will be

banded. The band-width increases with the degree of the splines.
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Assembly of the RN matrix proceeds in much the same way with

RN(i,J) - <e. -A e . It is easily shown that
1 .

RN RNI

N N 44R =1/2 R1  (4.4)

R N
L 2

wi th

NR 1176 ( j e NO)

01 -- I J' ' i -

L

.(s) '(s) ds ]
0

i No J N1

and RN L LRN] T2 1

The block structure of GN and RN suggest a compatible partitioning

of AN in the normal equations. it is readily seen that

44
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N N
A AO e
00 01

N N
A e A

N
A 2

2

The banded structure of GN and G2 suggests that a Cholesky factorizal

may be an efficient way of generating the A N matrices.

It is convenient to gather dimensional factors and write

N N 3
(El.) ?and R' (EI/L) R

-1 (2 L )

L With this notation it follows that

"0 11
A 00  L0 ]

"[0 0 0

"AN El
Ao1I" A 0 0(o) ý1(0) ýN(O)J

N E Nv1 ENT
A2"LG 2

"°• a•-N -E__ _ I • [ T
2" cL 42

45

. .



Formally then for aiiy N the system (2.1) is approximated by

-N N N Nx (t) = A x (t) + B MA(t)

NN Nwhere A is as above and B is found by projecting a onto Z

The approximating solution is found from the X coordinates as

N NzN(t) xi(t) e i

N N
The vecturs x and z are each of dimension (2N+3). The calculations

riecessary to generatt A are easily done on a computer once the N

functions are selected.

In order to illustrate these ideas a FORTRAN code was constructed.

The code assembles the matrices required to evaluate the Chandrasekar

equations (3.16) - (3.18). Since many of the matrices can be quite

sparce, the code employs partitioned versions so that most of the zero

entries are riot involved. For illustrative purposes the basis functions

are 'linear splines' [10] and all physical constants are taken to be

unity. The output operator v in equatiun (3.2) "reads out" the first

four state components (i.e. &(t),.-(t), -,(t), r(t)); it "samplts"

Sz5 (t) = uxx(t,x) at x = .2 and x = .4; and, it "samples" z 6 (t)

"(ut(t,x) + x W(t) at x .3 and x .7. Thus, has rank 8.
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The differential equations (3.16) and (3.17) were numerically

integrated backwards from the initial condition (3.18) for 10 time

uni ts. It was observed that the dependent variables KN andLN were

changing very slowly at that point and so these were taken to be

"steady-state" values. Shown in Figure 3 are graphs of the kernel

function K5 (x) Lcf equation 3.9] for N - 4 and N = 8. These rtsults are

somewhat preliminary. In practice one would continue tu increase N at

least until the observed differences were "small". Our research code

had modest dimensions for the various arrays and so the maximum

permissible N was rather limited. Note that with N = 8 the matrices

KN and LNin equations (3.16) and (3.17) are 1 x 19 and 8 x 19,

respectively.
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V. THE TWO BEAM STRUCTURE

In this section we develop the equations of motion of the structure

shown in Figure 4. It is assumed that members at the top and bottom are

rigid bodies connected by two flexible beams of identical length L, the

structure is allowed to pivot about a fixed pivot point, and that the

motion is in a plane. The development o0 the model is achieved by the

sdme method used to derive the equations of motion for the single beam

with a tip mass. Since the derivation is very simi-lar to the beam-tip

mass problem, we shall simply summarize the equations beluo.

Let ul(t,xl) and uZ(t,x 2 ) denote the position of the mass element

dm with respect to its undeflected position on beam I and beam 2,

respectively. The angle ip(t) denotes the rotation of the structure

about the pivot point and 0(t) is the angle of rotation of the top body

measured from its undeflected position. Let e denote the fixed angle

that each beam makes with the bottom rigid body and note that (see the

"Free Body Diagram in Figure 5)

sin ' h/L , cos ' (A-C)/ZL. (5.1)

Using the Free Body Diagram in Figure 4 we obtain the following set of

equations,

bottom Rigid Body

-f 'cos e + f f s in' + f cos e - f sin ' + f = 0 (5.2)
Xl Ylx4 Y4 P

-f sin e f cos ' - f sin e - f cos s + f = 0 (5.3)-xl yl x4y4
4 

y
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MAC + A/2 (f x-f X4 sne + A/2 (f yl-fY4)Cos e + M 1 + M4 (5.4)

"1ACM

Zeam 1

fx xi 2 s - I Ah (5.5)

f + f Rn1 _ A A-C. 8)~K.Yi Y 2 = ml • t)-T• t

+ u'tt(t,.)] (5.6)

M 2 1 m +
1 -f [I A(A-C)m1l V (t) 1 1 KY (t)

1' Yi+B2 "[11 "9 U

+ fL pxlul tt(t~xl)dxl (5.7)

0

Beam 2

S~Ahfx3 + fAx4 (t) (5.8)

A (fA- 8 - -Ctt) +Bu2

fY3  Y4  [(2 2 tt

M 3 - - Bf -p AWt)t)
Bfy [124 (A-C)m 2] (t) 124 K t

+ .L px 2 u2 tt(t,x2)dx2  (5.10)
0
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Top Rigid Body (mass mC)

(fx3-fx 2 )cos + (f y2-fy3 )sin - mc h(K" (t)-*" (t)) (5.11)

(f x2+f x3)Sin e + (fy 2+f y3)cos e - 0 (5.12)

-(M• +M c +, Cx• ÷§( •Io
-(2 M3 ) +.~ (fx2-fx )sin 6 Cf -fY )Cos 6

ICCM C" (t) + ' " (t)] (5.13)

Observe that equations (5.4), (5.11) and (5.13) can be combined to

produce the algebraic equation

(cose CK f ) , (I1K2A sin a (fxf
c CCM )'3 •2 I ACM x X4

((sine C-f ) + (KýA cos e (f f) (5.14)
mc- " CCM Y3 "Y2 ACM 4-fyl

- (_K (MI + M4 ) - -I (M2 + M3 ) - I-- MAC
IACM CCM IACM

Let f y fx denote the column vectors f = col (fyl,fY2f ,fy4)

f )T ) (T(f yl f Y ,fY3 r and - col (f fx f f f x2 f , x4

Y~2 ~3 4 .20324 12 394

respectively. Combine the algebraic equations (5.5) (5.8) (5.12) and (5.14)

into the one linear equation

50



m _fx+ R
S(5.15)

where

1 1

o 0 1 I
(5.16)

0 sin 0 sin e 0

(1+K)A sin 0 -(cos e +CK) (cos e + CK) -(I+K)A sin e
21ACM c 2-ACM + 21AC•, ZIACM

0 0 0 0

0 0 0

(5.17)
0 -cos e -cos e 0

,Ll+K)A cos e -(sin 6 CK ) (sin - CK) (1+K)A cos e
2 1ACM m'cal - ACM ' CM IACM

and
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-m Ah

m "A " (t) h (5.18)

0 0

(M, + M K -(I+K)M c
4) (M2 + M3)A L I CACM

We note that exists and therefore Yx can be determined as

a function of 7 and R. In order to complete the model we need to

provide equations for the elastic motion of the beams and the corresponding

boundary conditions. These equations are;

u tt(tx ) "X- ulx x(t,x ) - x3 rV(t) - ki (t)J (5.19)

U2  (t,x 2 ) -E U2x x(tx 2 ) - x2E•" (t) - K$j (t)] (3.20)utt I xx

with boundary conditions:

MI - ElIi U1 xx(t,0)

"at x1 • 0 fYl E xI x U (t.O)
y1  Xxxx

u1(t,0) - 0

"•U ul(t,0) "K¢:(t)
1
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M2 = EI1 lu xx(t,L)

at xi L f 2 EIl1ulxxx(t,L) (5.22)
Y2

ul(t,L) - 0

Ul x(t,L) - (1-K)dh(t)

M4 = E2 12 U2 xx(t,O)

at x2 -0 fY4 E212u 2xxx(tO) (5.23)

u2 (tO) - 0

U2x(t,O) - KO(t)

M a E212 2u2  (t,L)3 xx

at x2  L fY E212U2 (t,L) (5.24)

u2 (t,L) - 0

U2 (tL) a (1+K)-(t)

Let z(t) denote the vector

z(t) - OP( ),'4 t), ul xx(t,.),¢(t),s(t), U2 xx(tl), u2t(t,.)T

and note that z(t) [R2 x L2 (O,L, I 2 )] 2. Therefore, the state of
the system is described by four functions t, •, •, • and four L2

valued function ul u1t, u2 , * 2xxxx' t'
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Equations (5.19) (5.20), (5.4) and (5.11) can be written as the

first order system

Fi(t) - Hz(t) + G MAC(t) (5.25)

where H is a boundary-differential operator on Z - [R2x L2 (0,L, F 2

x [R2 x L2 (0,L, ]R2], and F is a bounded non-singular operator. Let

A - (F'IH) 8 a F"1 G (5.26)

and define

D (A) = (z e Z / z satisfies HI) (5.27)

where z = (z1 , z2 , z3 (.), z4 (.), z 5, z6 , z7(.), z8 (.))

and H1) i) z3 (.), z4 (.), z 7 (.), z,(.) all belong to W2 ' 2 (O,L).

ii) z4(0) = 0 , z4 (0) - K Z6

iii) z4 (L) - 0 , zý (0) = K Z6

iv) z8(0) = 0 , z8 (0) - K z6

v) z8 (L) - 0 , zý (L) = (1+K) z6. (5.28)

The specific form of F, H, G, A and 8 can easily be constructed

from equations (5.4), (5.11), (5.19) and (5.20) by combining equation

(5.15) with the equations (5.6), (5.7), (5.9), and (5.10). As in
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the problem with the single beam, it is necessary to show that the

operator A defined by (5.26) - (5.28) generates a dynamical system

on Z . Numerical algorithms will be similar to the one in Section

4 above.
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II

PART I

EFFECTS OF TIME DELAY, ACTUATOR DYNAMICS
AND SYSTEM DAMPING ON THE FEEDBACK

CONTROL OF A FLEXIBLE CABLE

62

II

-

!

r. . . o
I- 62



An Example of the Effect of Time Delay on
Systems with Feedback which are Governed by

Partial Differential Equations

I. Introduction

The purpose of this work is to offer some insight into some

problems associated with the design of controllers for systems governed

by partial differential equations. The method of analysis is based on

the concept of transfer functions which relate the output or response of

a system to the input. For simple structures, the displacement

(velocity, or slope) can be related to the force applied by an exact

transfer function. The accuracy of the transfer function is limited

only by the accuracy of the mathematical model used to describe the

structure. This open-loop transfer function can be used to construct

the closed-loop transfer function for the case where the displacement

(velocity, or slope) is fed back to the force. By examining the

characteristic equation of the closed-loop transfer function the

stability of the closed-loop system can be analyzed. This method will

be applied to a flexible cable under tension.

It should be pointed out that although only a simple cable mass

element will be considered here, the procedure can be used to examine

more complex structures [i]. The advantage of the formulation used here

is that it provides information in the form of root locus plots which

are familiar to most and hence adds to the physical interpretation of

the results. The inclusion of time delay in the problem does not change

the method of analysis.
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It is likely that in the near future almost all control systems

will be digital in nature. Consequently the control command will always

respond to the sensor inputs with a delay of at least one interval of

sampling time associated with the controller. The contention to be

demonstrated here is that regardless of how small this delay may be, it

can cause some instability in systems with feedback. Because of its

simplicity and familiarity, the analysis will be applied to the cable

problem as indicated previously.

I1. Flexible Cable Analysis

The vibrating cable is considered to be a continuous or distributed

parameter system, that is, one governed by a partial differential

equation. As shown in Figure la, f(x,t), O(x), and T(x) are the

distributed force, mass density, and tension in the cable, respectively,

expressed as a function of position, x along the cable. For this

analysis, negligible structural damping and no transverse stiffness is

assumed.

The equation of motion describing the transverse motion of the
cable can be obtained by examining a differential element of the cable.

Figure lb represents the free body diagram corresponding to a

differential element of cable of length dx. Applying Newton's second

law in the vertical direction, assuming small deflections, only vertical
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motion and ignoring second-order terms in dx, we find that the governing

partial differential equation of motion of the cable is given by [2]

SIT(x) a45± ÷) + f(x,t) •(x) 2Y(X~t) ,o < x < L (2.1)
at

While Eq. (2.1) is the general equation of motion of the cable, it can

be simplified by certain appropriate assumptions. In addition, any

solution of Eq. (2.1) will depend on the particular boundary conditions

of the cable configuration under consideration.

Fixed-free cable with a discrete mass at end

The configuration to be investigated is a cable of length L with

constant mass per unit length, o, subjected to a constant tension T.

This cable is fixed at one end, while the other end is free with a

concentrated mass attached. A control force is acting vertically on the

mass at the free end. Furthermore, there is no distributed force f(x,t)

acting along the cable, (see Figure 2a). For this particular problem

Eq. (2.1) reduces to

a2y(x't) = T 2t 0 <x <L (2.2)

with the associated boundary condition at the fixed end x 0,

y(Ot) 0 (2.3)

By writing Newton's second law for the free end, shown in Figure 2b, the

boundary condition for the free end x L becomes,

Y(x~t) -L"m )Y(x,t). -

L 3T xL a t2 xL (2.4)
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Eq. (2.2) can now be solved for the lateral deflection y(x,t).

In the course of obtaining this solution we seek a relationship between

the velocity at the end (x-L), (output) due to a force at the same end

(input). This relationship is best expressed in terms of a transfer

function which can be obtained by taking the Laplace transform of eq.

(2.2) with respect to the time variable and evaluating the result at

x-L. Since we are interested in the velocity, the result must be

multiplied by the Laplace variable,s which is equivalent to the time

derivative. The desired transfer function is given by

y(L s stnh /37TsL 
(2.5)

fLs Ap Tcoshv-/7 s L + ms sinh lp/IT sL 25

In order to simplify the problem further, we will set p-T-1. In

addition it is convenient to allow the end mass to go to zero since this

term only effects the uncontrolled frequencies and not the system

stability. Equation (2.5) now reduces to

SCOS• sinh s * G(s) (2.6)

Equation (2.6) is the open loop transfer function relating the velocity

at the end to the force at the end of the fixed-free cable.

With eq. (2.6) as a starting point we can now examine the system

characteristics for both open and closed loop control using root locus

analysis.
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III. Flexible Cable - Stability and Control

The system natural (open loop) frequencies can be obtained by

setting the denominator of the transfer function equal to zero and

solving for s, where s a n + iw. It is easily verified that the

solution of cosh s - 0 from Eq.(2.6)will yield imaginary values of s

corresponding to the frequencies associated with a fixed-free cable.

These are given by

; Tk2k-i k - -,±2,... (2.7)

where k is an integer which serves to identify a frequency.

Feedback Control

The system has open loop input, fL and output y related through

G(s). We now close the loop by feeding back velocity with a gain K, see

Figure 3.

The closed loop transfer function can be shown to be

G(s)cL a 11 + KG(s)]-I G(s) (3.1)

The closed-loop system dynamics can be determined from the closed-loop

characteristic equation

1 + K G(s) 0 (3.2)

_ ow all the classical tools for control design can be used [32.
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For velocity feedback at the cable end, the open-loop transfer function

was shown to be

G(s) = sinh s (2.6)

Using Eq. (3.2) the associated closed-loop characteristic equation

becomes

cosh s K sinh s = 0 (3.3)

If we let s = n + iw we can obtain an analytic solution for the feedback

by velocity. The results are given by

Tanh n -K ; (modd)

(3.4)

Tanhn - (m even)K ' T ( vn

The root locus plot is shown in Figure 4.

It is seen from the root locus that all the modes are contrclled by

feeding back the velocity at the end of the cable to a force at the end.

Furthermore no special filter is needed to process the sensor signal.

For this particular case all modes are affected the same for a given

gain. For gains less than one, the frequencies of vibration are the

same as the open-loop frequencies but the motion is damped out. For

gains greater than one the frequencies jump to those of a fixed-fixed
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cable and the motion is also damped. At a gain of one, n - - and it

can be shown that the system comes to rest in a finite time [4].

Although this simple problem can be solved analytically, the more

general problem to follow would become analytically tedious.

Consequently, a numerical method is used. Most computer routines that

generate root-loci need to be supplied with polynominal functions or

factors [5]. In this work the solution of a transcendental equation is

required. One method of solution, for the generation of the root loci,

is the use of a computer code which includes an IMSL routine called

ZSCNT which solves for the roots of a set of non-linear simultaneous

equations [63. The complex characteristic equation, Eq. (3.3) is one of

these sets when separated into real and imaginary equations. The

procedure is to apply repeatedly the ZSCNT routine starting with the

open-loop pole position with zero gain. Then, incrementing the gain,

solve for the first closed-loop pole position. This pole is then used

as the start point for solving for the pole at the next higher gain

value and so on. This method is found to be highly reliable for

calculating root-loci, although occasionally sensitive to abrupt changes

in locus direction. A program listing with an example input and output

file is given at the end of this report.

Feedback Control with Time Delay

Time delay is now introduced into the system such that the feedback

of velocity is described by the diagram in Figure 5. As we have deter-
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mined previously, the open-loop velocity force transfer function for the

fixed-free cable is

G(s) - sinh s (2.6)coshT s

Adding the time delay of e-ST to the feedback loop yields a closed loop

transfer function of the form

G(s) (3.5)

G's'CL 1 I + Ke ST G(s)

which results in the characteristic equation

cosh s + K e-sT sinh s - 0 (3.6)

or

cosh s + K (cosh sT - sinh ST ) sinh s 0 (3.7)

By letting s = n + i. and incrementing the gain, K for a fixed time

delay, T , the root locus for the cable with delayed feedback of

velocity can be obtained. The root locus for time delays of 0.1, 0.5,

and ).9 are shown in Figures 6,7, and 8, respectively. These diagrams

show clearly that unlike the no delay case that for any delay there are

associated unstable roots. A relationship between the delay time and

the unstable root. can be determined as follows:

7
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Starting with the characteristc equation for the cable with delay

eq.(3.7) we can note that it has the form of

F (s, k, T ) 0 (3.8)

Letting s - n + 1w and expanding yields a real equation and an imaginary

equation of the forms

R (n, .), K, T ) 0 (3.9)

and

I (n, w, K, T ) 0 (3.10)

Pi

If we select a particular value of T we can suppress its dependence in

eqs. (3.9) and (3.10). Further we can note that the real and imaginary

parts of the solution along any branch of the root locus are functions

of the gain K. Hence eqs. (3.9) and (3.10) take the form

R (n(K), w(K), K) = 0 (3.11)

and

I (n(k), w(K), K) 0 (3.12)
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By using the derivative chain rule we find

AR dn + LR dw + R
Th +K 3w + UK 0  (3.13)

and

31 dn + 31 dw + 31 0 (3.14)
aw UK -3

We are interested in solving for the quantity d n at the point where
dK

K = n = 0. Evaluated at these conditions dn describes how the real

part of the solution departs from the zero gain roots on the imaginary

axis. A positive value would yield instability for a small gain.

Solving for An or n' yields
dK

R I
n,= AK ,KI (3.15)

Rn I - R Tn
n n

where the subscripts indicate the partial derivatives in (3.13) and

(3.14).

Applying eq. (3.15) to the characteristic equation for our system

(3.7) yields the simple result

n' -COS ýJoT (3.16)
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Hence instability occurs when n' > 0 or

cos W < 0 (3.17)

Therefore, the system would be unstable if

T < < -2-

(3.18)

T < T

etc.

If we deal only with the first cycle and substitute the value for w

given by eq. (2.7), eq. (3.18) can be rewritten in the form

+ 1( + ( 1 < k < 9)+ 1 )

From eq. (3.19) it can be observed that for a value of delay there

will be a value of k -ok) for which the system is unstable. To

demonstrate the validity of this result we can return to the numerical

results we displayed previously. For the three time delays of interest

we have

0,1 5.5 < k < 15.5

T = 0.5 1.5 < k < 3.5

T = 0.9 1.05 < k < 2.16
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Since k must be an integer, these values describe particular frequencies

which would be driven unstable for small gain. Also from Figures 6, 7,

and 8 it can be seen that the cycles are repeated as indicated by eq.

(3.18).

I 'V. Feedback Control 4ith First Order Actuator

A

The previous investigation showed the effect of a control system

which included pure delay on the stability of a fixed-free cable. The

purpose of this section is to show the effect a first order actuator

might have on the cable stability both with and without a pure delay.

First Order Actuator without delay

We will initiate the study by placing a first order actuator in the

system as described by Figure 9. Here the time constant associated with

the first order system is designated by T. From the figure, the closed

loop transfer function can be shown to be

G(s) CL G(s) (4.1)

1 + K G(s)-r S+I

where G(s) is given by eq. (2.6). The resulting characteristic equation

is given by
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cosh s + s ' cosh s + K sinh s 0 (4.2)

By letting s n + iw, and incrementing the gain K for a fixec value of

T, the root locus for the cable with velocity feedback through a first

order actuator can be obtained using proceaures described previously.

The resulting root locus for values of T of 0.1 and 0.5 are shown

in Figures 10 and 11 respectively. These diagrams show that the first

order actuator by itself does not lead to any unstable roots for any

gain. However the strong stability characteritics displayed by direct

feedback as shown in Figure 4 are severely reduced, especially at the

higher frequencies. This result is easily explained by noting that the

first order actuator has a finite bandwidth and hence does not respond

very well to the frequencies outside of this bandwidth. Typically the

bandwith of a first order system is chdracterized by wB 8 I/T. For our

two cases, wB 10 and 2 for Figures 10 and 11 respectively.

Consequently, frequencies above these values are not affected as much as

those below. However, as indicated previously, the control over those

frequencies below the respective bandwidth frequencies is considerably

reduced over the case where the actuator dynamics is ignored. One would

expect that to control even low frequencies, an actuator with a large

bandwidth is required.

First Order Actuator with Delay

We can now include a pure delay in conjunction with a first order

actuator. This situation might occur if a digital control system is
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used to drive the actuator. The block diagram displaying this type of

set up is shown in Figure 12. From this diagram we can develop the

closed loop transfer function which is given by

G(s)CL 
= G(s)

+ K e -sT G.
TS-1 G(S)

wnich leads to the characteristic equation

cash s + sT cash s + K (cosh sT - sinh sT)sinh s = 0 (4.4)

Proceeding in the same manner as before, the root locus for a cable with

velocity feedback thru a first order actuator with delay can be

determined.

The root loci for the cases where T - 0.1 and 0.5 are shown in

Figures 13 and 14 respectively. It can be observed that in both cases,

the pdttern of stable and unstable roots is the same as that which

occurred with pure delay. The first frequency at which instability

occurs however is slightly lower for the case of a first order actuator

with delay than that with pure delay.

V. Feedback Control with System Damping

The various types ot damping that could be considered are

structural, viscous, and Coulomb [8]. The viscous damping model is
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chosen here, as this model is the most easily understood and most widely

used.

The Fixed-Free cable model for a constant tension cable with

viscous damping is given by eq. (2.1) or

cyt(x,t) +Pytt(xt) Z Tyxx (xt) (5.1)

where the viscous damping is

cyt(x,t) - -f(x,t) ,...

The boundary condition at the fixed end, x-O is

y(Ot) - 0 (2.3)

and at the free end, x-L is

f Ty (X't) xL rmYttrxt) (2.4)

The transfer function of this model can be obtained by taking the

Laplace transform of eq. (5.1) with respect to the time wariable and

evaluating the result at x-L. Again we are irterested in the velocity -

force transfer function. FLir the case where the end mass is zero, this

transfer function now has the -orm
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G s sinh /s4 + cs
G(s) = k(Ei cah 'T (3f L Vs +c cosh As'2 + cs (5.3)

The system diagram for the damped system is illustrated in Figure 3 with

G(s) now given by eq. (5.3).

The closed-loop characteristic equation is given by

Vs 2 + Cs cosh VT + cs + K s sinhV7s +Tcs (5.4)

By letting s = n+iw for fixed damping coefficient, c and incrementing

the gain, K, the root locus can be obtained as before.

The addition of damping to the closed-loop system merely shifts the

root loci from poles with zero real parts to poles that have negative

real parts. The diagram will look like Figure 4 with starting and

ending points shifted into the left half plane and again no unstable

roots.

Feedback Control with System Damping and Delay

A more interesting result is obtained by adding time delay to a

system with damping. The closed-loop :haracteristic equation of this

case is given by

",s + cs cosh 's-++ cs + Ks (cosh ST - sinh sT) sinh ,s + cs (5.5)
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By letting s n + iw and incrementing the gain, K for a fixed time

delay, and a fixed damping coefficient, c, the root locus for the cable

with damping and delayed feedback of velocity can be obtained. The root

locus for time delay of 0.1 and damping coefficients of 0.1 and 1.0 are

shown in Figures 15 and 16 respectively. These diagrams are comparable

to the diagram in Figure 6, but shifted to the left by an amount

proportional to the damping coefficient. This observation leads to the

conclusion that given sufficient damping the system is stable for small

values of gains even with time delay.

VI. Closure

The cable problem discussed in this report can be made extremely

stable by feeding back velocity at the end of the cable to a cc-located

force at the end of the cable. However it was shown that if any delay

at all is used in implementing this feedback control, the system beconms

unstable. This result was determined analytically with no restrictive

assumptions other than those mace for the original governing equatior,.

The results were confirmed for selected numerical calculations.

In addition the results of a first order actuator and a first order

actuator with delay wpre presente-i indicating that any delay leads to

instabilit). Without delay the first order actuator does not lead to

ins ability but is considerably less effective in stabilizing the cable

than if no actuatur dynamics were present. Fu'ther, the effec.. at

higher frequencies are limited due to the bandwidth oi the actuator.
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The addition of damping shifts the whole root locus to the left and

allows a system with pure delay to remain stable for a small amount of

gain.
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Figure 5 Feadback System With Delay

8

S I-

18 __ _ _ -_ _ _

o _

R-2.00 -'1.00 0o.00 1'.00 .00REAL

FIXED-FREE CPA.E FEEDING BACK VELOCITY

TO FORCE AT END. DELAY - 0.1

Figure 6

I

I



_-_

58

-ý2 00 -'I.00 00 10 2'.0n
REAL

FIXEO-FR;E CABLE FEEDING BACK VELOCITY

TO FORCE ST ENO, OELAY 0.5

Figure 7

886

. . . . . . . . . .. . . . . . . . . .



I8

S€

8

2 -=- ___ -______

Q2- O0 - .00C 0'. 0 1.0O0 2. OC-

REAL

FIXED-FREE CABLE FEEDING BACK VELCCITY

TO FORCE AT ENO. DELAY 0.9

Figure 8

87



If

Figure 9 Feedback System with Firlt
Order Actuator
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Program Listing

C THIS ROUTINE SOLVES A SYSTEM OF TRANSENDENTAL NONLINEAR EQUATIONS

C

C IT USES IMSL ROUTINE ZSCNT

C THE VARIABLES USED ARE: PAR(l) = G - GAIN, PAR(2) = TIME DELAY

C X(1) = R = REAL PART OF ROOT, X(2) = W = IMAGINARY PART OF ROOT

C S - COMPLEX (R,W), K = NO. OF ROOTS, NR = NO. OF POINTS PER ROOT

C THE PROGRAM READS FROM DATA FILE 3 AND WRITES TO FILE 4

C CHAR = CHARACTERISTIC EQUATION (THIS CASE FIX-FREE CABLE W/DELAY

COMPLEX SH,Z,CH,SI,CO,S,CHAR,TS

EXTERNAL FCN

DIMENSION X(50),F(50),PAR(50;,WK(50)

C READ IN TIME DELAY

READ (3,*) PAR(2)

c READ ONE Al A TIME EACH OF 19 ROOTS, INITIALIZE GAIN = 0

DO 30 K=1,1'

PAR(.)=0.0

READ (3,*) X(1),X(2)

WRITE (4,5) X(1),X(2),PAR(2)

5 FORMAT (1OX,33HSTART REAL IMAGIN. AND TIME DELAY,/,3EI5.4,//)

WRITE (4,2)

2 FORMAT(6X,7HREAL S,9X,7HIMAG. S,7X,10HNORM ERROR,5X,4HGAIN)

C 8 SIGNIFICANT FIGURES, TWO EQUATIONS (I.E. REAL AND IMAGINARY)

NSIG =8

N = 2

ITMAX = 200

KNN = N

C SOLVE EQUATIONS FOR 2.00 POINTS FOR EACH ROOT

DC 20 NR = 1,100

CALL ZSCNT (FCN,NSIG,N,ITMAX,PAR,X,FNORM,WK,IER)
WRITE(4,1) WXI), I=l,KNN), FNORM, FAR(l)

1 FORMAT (4E15.4)

C INCREMENT THE GAIN SLOWLY SO THE SOLVER TO FOLLOW THE ROOT LOCUS

20 PAR(l) = 1.04*(PAR(1)+0.02)

WRITE' 11,4)

4 FFORMIAT .I i)

9?



30 CONTINUE

STOP

END

SUBROUTINE FCN (X,F,N,PAR)

COMPLEX SH,Z,CH,SI,CO,S,CHAR,TS

DIMENSION X(N),F(N),PAR(1)

C ABREVIATE SIN, COS, SINH, AND COSH

SH(Z)=(CEXP(Z)-CEXP(-Z))/(2.0,0.0)

CH(Z)=(CEXP(Z)+CEXP(-Z))/(2.0,0.0)

SI(Z)=CSIN(Z)

CO(Z)-CCOS(Z)

R-X(1)

W-X(2)

G-PAR(1)

S=CMPLX (R,W)

TS - S * PAR(2)

C THE CHARACTERISTIC EQUATION GOES HERE

CHAR=CH(S)+G*(CH(TS)-SH(TS))*SH(S)

F( 1)=REAL(CHAR)

F(2)-AIMAG(CHAR)

RETURN

END

9

S~93

I

.................................... •---. .".....................



Data Input File

0.1

0.0 1.570796

0.0 4.712389

0.0 7.853982

0.0 10.995574

Output For One Root

START REAL IMAGIN. AND TIME DELAY

0.0 0.1571E+01 0.1000E+00

REAL S IMAG. S NORM ERROR GAIN

0.0 0.1571E+01 0.9858E-13 0.0

-0.2059E-01 0.1574E+01 0.5090E-12 0.2080E-01

-0.4211E-01 0.1578E+01 0.1089E-13 0.4243E-01

-0.6462E-01 0.1581E+01 0.2269E-11 0.6493E-01

-0.8820E-01 0.1585E+01 0.9173E-12 0.8833E-01

-0.1129E+00 0.1589E+01 0.2791E-12 0.1127E+00

-0.1389E+00 0.1593E+01 0.9437E-13 0.1380E+00

-0.1663E+00 0.1598E+01 0.1360E-11 0 .1643E+00

-0.1952E+00 0.1603E+01 0.2402E-11 0.1917E+00

-0.2257E+00 0.1.609E+01 0.1796E-11 0.2201E+00

-0.2580E+00 0.1615E+01 0.9998E-13 0.2497E+00

-0.2924E+00 0.1621E+01 0.1628E-11 0.2805E+00

-0.3291E+00 0.1629E+01 0.1374E-11 0.3125E+00

-0.3685E+00 0.1638E+01 0.3695E-12 0.3458E+00
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